If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x)^2-4(x)=0
a = 8; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·8·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*8}=\frac{8}{16} =1/2 $
| 5x+10=2x+(-2) | | 9x+3=9x+2 | | t-1/2=1/3 | | 2^3x+4=4000 | | 21x+17=(15)+6 | | 3x=432 | | 4k−8=3k | | n-(8W)²(=8W²)= | | 3=v/5-11 | | 17m=510 | | -1.7-2m+6.6-4m=15.3 | | (8x)^2=4x | | 32=43+23x-5 | | -17=-8v+5(v+2) | | 3f+2f=24 | | 3x-7+2x=4(x-1)+10 | | 4/5C+65=k | | -3(x-7)=9x-27 | | -8j=4−7j | | 165-4x=145-3.5x | | 3x+3x-40x=0 | | 13+11x=12x+2 | | -7r−5=-6r | | 63-7x²=0 | | 52=1.9t+4.9t^2 | | -0.56x+0.26x=9.6 | | -10n+2=-9n | | 2w+24=7(w+7) | | t6=24 | | -7t=-5t−8 | | 1/100=10^n | | 8(5x-3)=256 |